The title compound, C\textsubscript{20}H\textsubscript{19}N\textsubscript{3}S\textsubscript{2}, crystallized as a cis–trans conformer in which the quinoline ring system is cis across the C–S bond but adopts a trans geometry with respect to the C–N bond. The compound exists in the thione form with the presence of a C=S bond.

Related literature

The dithiocarbazate ligand used to prepare the title compound is \textit{S}-quinolin-2-ylmethyl dithiocarbazate. This compound was prepared as described by How \textit{et al.} (2007). Interatomic parameters for similar compounds are reported by Chan \textit{et al.} (2003), Khoo \textit{et al.} (2005) and How \textit{et al.} (2007).

Experimental

Crystal data

\[
\begin{align*}
\text{C}_{20}\text{H}_{19}\text{N}_{3}\text{S}_{2} & \quad M = 365.52 \\
M & = 365.52 \\
\text{Triclinic, } & \alpha = 7.7423 (2) \ \text{Å} \\
\beta & = 8.1250 (13)^{c} \\
x & = 8.2816 (2) \ \text{Å} \\
y & = 8.57886 (13)^{c} \\
z & = 2 \\
V & = 876.70 (4) \ \text{Å}^{3} \\
T & = 150 \ \text{K} \\
\end{align*}
\]

Refinement

\[
\begin{align*}
\text{min} & = 0.79, \text{max} = 0.98 \\
\sigma(C–C) & = 0.002 \ \text{Å} \\
\text{R} & = 0.095; \text{data-to-parameter ratio} = 18.4. \\
\end{align*}
\]

\[
\begin{align*}
\mu & = 0.31 \ \text{mm}^{-1} \quad T = 150 \ \text{K} \\
\text{wR} = 0.095 \\
\end{align*}
\]

\[
\begin{align*}
\text{S} & = 0.93 \\
\text{S} & = 0.93 \\
\text{4155 reflections} & = 0.061 \\
226 parameters & \\
\text{H-atom parameters constrained} & \Delta \rho_{\text{max}} = 0.52 \ \text{e Å}^{-3} \\
\text{H-atom parameters constrained} & \Delta \rho_{\text{min}} = -0.45 \ \text{e Å}^{-3} \\
\text{4155 independent reflections} & \overline{\Delta \rho_{\text{max}}} = 0.095 \\
\text{4155 reflections} & \overline{\Delta \rho_{\text{min}}} = 0.095 \\
\text{4155 reflections with } I > 2\sigma(I) & \overline{\Delta \rho_{\text{max}}} = 0.095 \\
\text{4155 reflections with } I > 2\sigma(I) & \overline{\Delta \rho_{\text{min}}} = 0.095 \\
\end{align*}
\]

\table{Table 1}{Selected geometric parameters (Å, °).}{
\begin{tabular}{lll}
\hline
C9—N10 & 1.352 (2) & N10—N11 & 1.3803 (19) \\
C9—S21 & 1.6593 (17) & \text{C9—N10—N11} & 117.61 (13) \\
S8—C9—S21 & 1.352 (2) & \text{S8—C9—S21} & 126.92 (10) \\
N10—N11 & 1.3803 (19) & \text{N10—N11} & 117.61 (13) \\
N10—C9—S21 & 120.76 (13) & \text{N10—C9—S21} & 120.76 (12) \\
\hline
\end{tabular}
\}

\small
\text{FNFH gratefully acknowledges MOSTI, Malaysia, for an attachment grant under an NSF scholarship, and the Chemical Crystallography Laboratory, Oxford University, for instrumental facilities.}

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2012).

References

supplementary materials
2-Quinolylmethyl N’-[1-(m-tolyl)ethylidene]hydrazinecarbodithioate

F. N.-F. How, D. J. Watkin, K. A. Crouse and M. I. M. Tahir

Comment

S-quinolin-2-ylmethyl dithiocarbazate, a new dithiocarbazate derivative has been introduced. This dithiocarbazate derivative ligand contains a quinoline ring [How, et al., 2007]. This new ligand were used to synthesized new Schiff bases. It is likely that these compound will be of interest for further research.

The C9—N10 bond [1.352 (2) Å] is comparable with the literature value and showed a double-bond character. [1.342 (2) Å; Chan et al., 2003] and [1.343 (3) Å; Khoo et al., 2005]. The C=S bond is 1.6593 (17) Å, which is shorter than in S-quinolin-2-ylmethyl dithiocarbazate [1.6804 (14) Å; How, et al., 2007] but comparable with Schiff bases derived from S-benzyldithiocarbazate. [1.6503 (17) Å; Chan et al., 2003] and [1.664 (2) Å; Khoo et al., 2005]

The molecule contains three planar fragments viz. the quinoline ring, dithiocarbazate moiety and the benzyl group. [Fig. 1.]. The dihedral angle between the planar quinoline ring and the dithiocarbazate moiety is 103.7°. The dihedral angle between the dithiocarbazate moiety with the benzyl group is 17.2°.

Bond angle N11—N10—C9 [117.61 (13)°] is slightly shorter than other Schiff bases. [119.20 (14)°; Chan et al., 2003] and [119.35 (17)°; Khoo et al., 2005]. However, S21—C9—S8 [126.92 (10)°] is slightly longer. [125.60 (10)°; Chan et al., 2003] and [125.22 (12)°; Khoo et al., 2005]. This is due to the twisting of both benzyl ring and the quinoline ring for stabilization.

The isolated molecule is L shaped [Fig. 2.]. Viewed along the a axis, the molecule packed in hearing-bone columns with pairs of quinoline rings residues lying parallel [Fig. 3.] and overlapping (mean separation 3.4 Å), corresponding to a reasonably strong π-π interaction between the quinoline rings. [Fig. 4.] Pairs of methyl benzyl residues are also almost parallell (mean separation 3.7 Å), but there is no overlap between the aromatic moieties. The moiety C7/S8/C9/N10/N11/C12/S21 behaves as a rigid group (TLS R-factor= 0.085).

Experimental

S-quinolin-2-ylmethyl dithiocarbazate (0.02 mol) [How, et al., 2007] was dissolved in hot absolute ethanol (30 ml) with dropwise addition of equimolar amount of 3-methylacetophenone. The mixture was left heated with stirring to reduce half the volume. Precipitate formed were filtered and washed with a little ice-cold ethanol. The crude yellow product was re-crystallized from ethanol. Yellow single crystals were formed upon slow evaporation of an ethanol solution. (Yield = 70%, M.p = 437.7–438.5 K)

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 Å) and $U_{iso}(H)$ (in the range 1.2–1.5 times U_{eq} of the parent atom), after
which the positions were refined with riding constraints. The other atoms were refined with anisotropic atomic displacement parameters.

Figures

Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2. The packing diagram of the molecules viewed along the a axis.

Fig. 3. The quinoline rings are parallel to each other.

Fig. 4. The overlapping of the quinoline rings due to the $\pi-\pi$ interaction.
2-Quinolylmethyl \(N'\)-[1-(\(m\)-tolyl)ethylidene]hydrazinecarbodithioate

Crystal data

C\(_{20}\)H\(_{19}\)N\(_3\)S\(_2\)
\(F_{000} = 384\)

\(M_r = 365.52\)

Triclinic, \(P\bar{T}\)

\(a = 7.7423\) (2) \(\AA\)

\(b = 8.2816\) (2) \(\AA\)

\(c = 14.0409\) (4) \(\AA\)

\(\alpha = 81.2501\) (13)\(^{\circ}\)

\(\beta = 80.5729\) (13)\(^{\circ}\)

\(\gamma = 85.7886\) (13)\(^{\circ}\)

\(V = 876.70\) (4) \(\AA^3\)

\(Z = 2\)

Melting point: 438.5 K

\(\lambda = 0.71073\) \(\AA\)

Cell parameters from 3785 reflections

\(\mu = 0.31\) mm\(^{-1}\)

\(T = 150\) K

Plate, yellow

Data collection

Nonius KappaCCD diffractometer

4155 reflections with \(I > -3\sigma(I)\)

Monochromator: graphite

\(R_{int} = 0.043\)

\(T = 150\) K

\(\theta_{max} = 27.9^{\circ}\)

\(\omega\) scans

Absorption correction: multi-scan

DENZO/SCALEPACK; Otwinowski & Minor, 1997

\(h = -9 \rightarrow 10\)

\(T_{min} = 0.79, T_{max} = 0.98\)

14454 measured reflections

\(I = -18 \rightarrow 18\)

14155 independent reflections

Refinement

Refinement on \(F^2\)

Hydrogen site location: inferred from neighbouring sites

Least-squares matrix: full

H-atom parameters constrained

Method = Modified Sheldrick

\(R[F^2 > 2\sigma(F^2)] = 0.061\)

\(wR(F^2) = 0.095\)

\((\Delta/\sigma)_{max} = 0.0003\)

\(S = 0.93\)

4155 reflections

\(\Delta \rho_{max} = 0.52\) e \(\AA^{-3}\)

226 parameters

\(\Delta \rho_{min} = -0.45\) e \(\AA^{-3}\)

Primary atom site location: structure-invariant direct methods

Extinction correction: None
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Uiso</th>
<th>Ueq</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>−0.0600 (2)</td>
<td>0.1649 (2)</td>
<td>0.37590 (12)</td>
<td>0.0210</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>0.0184 (2)</td>
<td>0.2108 (2)</td>
<td>0.45150 (12)</td>
<td>0.0218</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>0.1944 (2)</td>
<td>0.1553 (2)</td>
<td>0.45653 (13)</td>
<td>0.0227</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>0.2799 (2)</td>
<td>0.0608 (2)</td>
<td>0.39084 (12)</td>
<td>0.0228</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>0.1915 (2)</td>
<td>0.0177 (2)</td>
<td>0.31810 (12)</td>
<td>0.0205</td>
<td></td>
</tr>
<tr>
<td>N6</td>
<td>0.02722 (17)</td>
<td>0.06871 (17)</td>
<td>0.30981 (10)</td>
<td>0.0204</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>0.2821 (2)</td>
<td>−0.0930 (2)</td>
<td>0.24793 (13)</td>
<td>0.0223</td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>0.45390 (5)</td>
<td>0.00735 (5)</td>
<td>0.15921 (3)</td>
<td>0.0227</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>0.6441 (2)</td>
<td>−0.0558 (2)</td>
<td>0.21229 (12)</td>
<td>0.0207</td>
<td></td>
</tr>
<tr>
<td>N10</td>
<td>0.78668 (17)</td>
<td>0.02300 (17)</td>
<td>0.16409 (10)</td>
<td>0.0219</td>
<td></td>
</tr>
<tr>
<td>N11</td>
<td>0.76719 (18)</td>
<td>0.12944 (17)</td>
<td>0.08037 (10)</td>
<td>0.0220</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>0.8989 (2)</td>
<td>0.2090 (2)</td>
<td>0.03342 (12)</td>
<td>0.0207</td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>0.8649 (2)</td>
<td>0.3172 (2)</td>
<td>−0.05711 (12)</td>
<td>0.0206</td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>0.6920 (2)</td>
<td>0.3671 (2)</td>
<td>−0.07123 (13)</td>
<td>0.0226</td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>0.6572 (2)</td>
<td>0.4663 (2)</td>
<td>−0.15533 (13)</td>
<td>0.0232</td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>0.7980 (2)</td>
<td>0.5155 (2)</td>
<td>−0.22723 (13)</td>
<td>0.0277</td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>0.9683 (2)</td>
<td>0.4654 (2)</td>
<td>−0.21536 (13)</td>
<td>0.0289</td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>1.0018 (2)</td>
<td>0.3675 (2)</td>
<td>−0.13044 (13)</td>
<td>0.0257</td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>0.4721 (2)</td>
<td>0.5204 (2)</td>
<td>−0.17004 (14)</td>
<td>0.0312</td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>1.0788 (2)</td>
<td>0.1982 (2)</td>
<td>0.06223 (13)</td>
<td>0.0275</td>
<td></td>
</tr>
<tr>
<td>S21</td>
<td>0.65894 (5)</td>
<td>−0.19488 (5)</td>
<td>0.30940 (3)</td>
<td>0.0245</td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>−0.0797 (2)</td>
<td>0.3076 (2)</td>
<td>0.51814 (13)</td>
<td>0.0272</td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>−0.2492 (2)</td>
<td>0.3583 (2)</td>
<td>0.50908 (14)</td>
<td>0.0315</td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>−0.3267 (2)</td>
<td>0.3139 (2)</td>
<td>0.43410 (14)</td>
<td>0.0309</td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>−0.2357 (2)</td>
<td>0.2197 (2)</td>
<td>0.36890 (14)</td>
<td>0.0264</td>
<td></td>
</tr>
<tr>
<td>H31</td>
<td>0.2520</td>
<td>0.1821</td>
<td>0.5049</td>
<td>0.0288*</td>
<td></td>
</tr>
<tr>
<td>H41</td>
<td>0.3961</td>
<td>0.0216</td>
<td>0.3934</td>
<td>0.0267*</td>
<td></td>
</tr>
<tr>
<td>H71</td>
<td>0.3351</td>
<td>−0.1901</td>
<td>0.2842</td>
<td>0.0269*</td>
<td></td>
</tr>
<tr>
<td>H72</td>
<td>0.1962</td>
<td>−0.1268</td>
<td>0.2120</td>
<td>0.0265*</td>
<td></td>
</tr>
<tr>
<td>H141</td>
<td>0.5976</td>
<td>0.3328</td>
<td>−0.0224</td>
<td>0.0273*</td>
<td></td>
</tr>
<tr>
<td>H161</td>
<td>0.7761</td>
<td>0.5849</td>
<td>−0.2840</td>
<td>0.0337*</td>
<td></td>
</tr>
<tr>
<td>H171</td>
<td>1.0622</td>
<td>0.4989</td>
<td>−0.2641</td>
<td>0.0341*</td>
<td></td>
</tr>
<tr>
<td>H181</td>
<td>1.1171</td>
<td>0.3356</td>
<td>−0.1222</td>
<td>0.0295*</td>
<td></td>
</tr>
<tr>
<td>H191</td>
<td>0.4597</td>
<td>0.6381</td>
<td>−0.1801</td>
<td>0.0469*</td>
<td></td>
</tr>
<tr>
<td>H192</td>
<td>0.3907</td>
<td>0.4809</td>
<td>−0.1141</td>
<td>0.0466*</td>
<td></td>
</tr>
<tr>
<td>H193</td>
<td>0.4445</td>
<td>0.4798</td>
<td>−0.2257</td>
<td>0.0463*</td>
<td></td>
</tr>
<tr>
<td>H201</td>
<td>1.1334</td>
<td>0.3001</td>
<td>0.0399</td>
<td>0.0415*</td>
<td></td>
</tr>
<tr>
<td>H202</td>
<td>1.0724</td>
<td>0.1749</td>
<td>0.1311</td>
<td>0.0415*</td>
<td></td>
</tr>
<tr>
<td>H203</td>
<td>1.1508</td>
<td>0.1128</td>
<td>0.0336</td>
<td>0.0421*</td>
<td></td>
</tr>
<tr>
<td>H221</td>
<td>−0.0266</td>
<td>0.3374</td>
<td>0.5687</td>
<td>0.0329*</td>
<td></td>
</tr>
<tr>
<td>H231</td>
<td>−0.3129</td>
<td>0.4241</td>
<td>0.5535</td>
<td>0.0372*</td>
<td></td>
</tr>
<tr>
<td>H241</td>
<td>−0.4440</td>
<td>0.3492</td>
<td>0.4284</td>
<td>0.0361*</td>
<td></td>
</tr>
<tr>
<td>H251</td>
<td>−0.2890</td>
<td>0.1901</td>
<td>0.3188</td>
<td>0.0310*</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>0.8843</td>
<td>0.0107</td>
<td>0.1888</td>
<td>0.0281*</td>
<td></td>
</tr>
</tbody>
</table>
Atomic displacement parameters (Å\(^2\))

<table>
<thead>
<tr>
<th></th>
<th>(U^{11})</th>
<th>(U^{22})</th>
<th>(U^{33})</th>
<th>(U^{12})</th>
<th>(U^{13})</th>
<th>(U^{23})</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.0220 (8)</td>
<td>0.0180 (8)</td>
<td>0.0207 (9)</td>
<td>−0.0026 (7)</td>
<td>−0.0008 (7)</td>
<td>0.0026 (7)</td>
</tr>
<tr>
<td>C2</td>
<td>0.0249 (8)</td>
<td>0.0184 (8)</td>
<td>0.0203 (9)</td>
<td>−0.0055 (7)</td>
<td>−0.0004 (7)</td>
<td>0.0018 (7)</td>
</tr>
<tr>
<td>C3</td>
<td>0.0238 (8)</td>
<td>0.0237 (9)</td>
<td>0.0208 (9)</td>
<td>−0.0049 (7)</td>
<td>−0.0045 (7)</td>
<td>−0.0011 (7)</td>
</tr>
<tr>
<td>C4</td>
<td>0.0189 (8)</td>
<td>0.0255 (9)</td>
<td>0.0232 (9)</td>
<td>−0.0019 (7)</td>
<td>−0.0042 (7)</td>
<td>0.0007 (7)</td>
</tr>
<tr>
<td>C5</td>
<td>0.0192 (8)</td>
<td>0.0205 (9)</td>
<td>0.0205 (9)</td>
<td>−0.0055 (7)</td>
<td>−0.0012 (6)</td>
<td>0.0011 (7)</td>
</tr>
<tr>
<td>N6</td>
<td>0.0177 (7)</td>
<td>0.0213 (7)</td>
<td>0.0209 (7)</td>
<td>−0.0029 (6)</td>
<td>−0.0015 (5)</td>
<td>0.0001 (6)</td>
</tr>
<tr>
<td>C7</td>
<td>0.0173 (8)</td>
<td>0.0245 (9)</td>
<td>0.0253 (9)</td>
<td>−0.0015 (7)</td>
<td>−0.0026 (7)</td>
<td>−0.0041 (7)</td>
</tr>
<tr>
<td>S8</td>
<td>0.0171 (2)</td>
<td>0.0292 (2)</td>
<td>0.0207 (2)</td>
<td>−0.00164 (17)</td>
<td>−0.00296 (16)</td>
<td>0.00023 (18)</td>
</tr>
<tr>
<td>C9</td>
<td>0.0187 (8)</td>
<td>0.0211 (9)</td>
<td>0.0226 (9)</td>
<td>0.0015 (7)</td>
<td>−0.0019 (7)</td>
<td>−0.0066 (7)</td>
</tr>
<tr>
<td>N10</td>
<td>0.0178 (7)</td>
<td>0.0264 (8)</td>
<td>0.0201 (7)</td>
<td>−0.0009 (6)</td>
<td>−0.0039 (6)</td>
<td>0.0022 (6)</td>
</tr>
<tr>
<td>N11</td>
<td>0.0210 (7)</td>
<td>0.0237 (8)</td>
<td>0.0199 (7)</td>
<td>−0.0006 (6)</td>
<td>−0.0022 (6)</td>
<td>0.0000 (6)</td>
</tr>
<tr>
<td>C12</td>
<td>0.0177 (8)</td>
<td>0.0222 (9)</td>
<td>0.0229 (9)</td>
<td>0.0002 (7)</td>
<td>−0.0026 (7)</td>
<td>−0.0068 (7)</td>
</tr>
<tr>
<td>C13</td>
<td>0.0203 (8)</td>
<td>0.0201 (9)</td>
<td>0.0214 (9)</td>
<td>−0.0018 (7)</td>
<td>−0.0015 (6)</td>
<td>−0.0043 (7)</td>
</tr>
<tr>
<td>C14</td>
<td>0.0212 (8)</td>
<td>0.0242 (9)</td>
<td>0.0224 (9)</td>
<td>−0.0030 (7)</td>
<td>−0.0019 (7)</td>
<td>−0.0047 (7)</td>
</tr>
<tr>
<td>C15</td>
<td>0.0278 (9)</td>
<td>0.0197 (9)</td>
<td>0.0240 (9)</td>
<td>−0.0002 (7)</td>
<td>−0.0074 (7)</td>
<td>−0.0062 (7)</td>
</tr>
<tr>
<td>C16</td>
<td>0.0369 (10)</td>
<td>0.0226 (9)</td>
<td>0.0220 (9)</td>
<td>−0.0012 (8)</td>
<td>−0.0047 (7)</td>
<td>0.0014 (7)</td>
</tr>
<tr>
<td>C17</td>
<td>0.0301 (9)</td>
<td>0.0250 (9)</td>
<td>0.0272 (10)</td>
<td>−0.0050 (8)</td>
<td>0.0054 (8)</td>
<td>0.0027 (8)</td>
</tr>
<tr>
<td>C18</td>
<td>0.0220 (8)</td>
<td>0.0256 (9)</td>
<td>0.0280 (10)</td>
<td>−0.0021 (7)</td>
<td>−0.0016 (7)</td>
<td>−0.0010 (8)</td>
</tr>
<tr>
<td>C19</td>
<td>0.0308 (10)</td>
<td>0.0322 (10)</td>
<td>0.0324 (11)</td>
<td>0.0019 (8)</td>
<td>−0.0125 (8)</td>
<td>−0.0037 (8)</td>
</tr>
<tr>
<td>C20</td>
<td>0.0204 (8)</td>
<td>0.0351 (10)</td>
<td>0.0266 (10)</td>
<td>−0.0039 (8)</td>
<td>−0.0058 (7)</td>
<td>0.0001 (8)</td>
</tr>
<tr>
<td>S21</td>
<td>0.0228 (2)</td>
<td>0.0262 (2)</td>
<td>0.0226 (2)</td>
<td>−0.00006 (18)</td>
<td>−0.00369 (17)</td>
<td>0.00191 (18)</td>
</tr>
<tr>
<td>C22</td>
<td>0.0316 (9)</td>
<td>0.0247 (9)</td>
<td>0.0242 (9)</td>
<td>−0.0053 (8)</td>
<td>0.0018 (7)</td>
<td>−0.0051 (8)</td>
</tr>
<tr>
<td>C23</td>
<td>0.0338 (10)</td>
<td>0.0221 (9)</td>
<td>0.0353 (11)</td>
<td>−0.0001 (8)</td>
<td>0.0055 (8)</td>
<td>−0.0061 (8)</td>
</tr>
<tr>
<td>C24</td>
<td>0.0231 (9)</td>
<td>0.0284 (10)</td>
<td>0.0377 (11)</td>
<td>0.0025 (8)</td>
<td>0.0004 (8)</td>
<td>−0.0014 (9)</td>
</tr>
<tr>
<td>C25</td>
<td>0.0227 (8)</td>
<td>0.0254 (9)</td>
<td>0.0299 (10)</td>
<td>−0.0009 (7)</td>
<td>−0.0034 (7)</td>
<td>−0.0010 (8)</td>
</tr>
</tbody>
</table>

Geometric parameters (Å, °)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>C2</td>
<td></td>
<td></td>
<td>1.417 (2)</td>
<td></td>
<td>1.390 (2)</td>
</tr>
<tr>
<td>C1</td>
<td>N6</td>
<td></td>
<td></td>
<td>1.375 (2)</td>
<td></td>
<td>1.386 (2)</td>
</tr>
<tr>
<td>C1</td>
<td>C25</td>
<td></td>
<td></td>
<td>1.416 (2)</td>
<td></td>
<td>0.944</td>
</tr>
<tr>
<td>C2</td>
<td>C3</td>
<td></td>
<td></td>
<td>1.415 (2)</td>
<td></td>
<td>1.398 (3)</td>
</tr>
<tr>
<td>C2</td>
<td>C22</td>
<td></td>
<td></td>
<td>1.414 (3)</td>
<td></td>
<td>1.507 (2)</td>
</tr>
<tr>
<td>C3</td>
<td>C4</td>
<td></td>
<td></td>
<td>1.358 (2)</td>
<td></td>
<td>1.382 (3)</td>
</tr>
<tr>
<td>C3</td>
<td>H31</td>
<td></td>
<td></td>
<td>0.932</td>
<td></td>
<td>0.941</td>
</tr>
<tr>
<td>C4</td>
<td>C5</td>
<td></td>
<td></td>
<td>1.419 (2)</td>
<td></td>
<td>1.386 (2)</td>
</tr>
<tr>
<td>C4</td>
<td>H41</td>
<td></td>
<td></td>
<td>0.939</td>
<td></td>
<td>0.940</td>
</tr>
<tr>
<td>C5</td>
<td>N6</td>
<td></td>
<td></td>
<td>1.328 (2)</td>
<td></td>
<td>0.933</td>
</tr>
<tr>
<td>C5</td>
<td>C7</td>
<td></td>
<td></td>
<td>1.503 (2)</td>
<td></td>
<td>0.963</td>
</tr>
<tr>
<td>C7</td>
<td>S8</td>
<td></td>
<td></td>
<td>1.8210 (16)</td>
<td></td>
<td>0.954</td>
</tr>
<tr>
<td>C7</td>
<td>H71</td>
<td></td>
<td></td>
<td>0.985</td>
<td></td>
<td>0.957</td>
</tr>
<tr>
<td>C7</td>
<td>H72</td>
<td></td>
<td></td>
<td>0.978</td>
<td></td>
<td>0.958</td>
</tr>
<tr>
<td>S8</td>
<td>C9</td>
<td></td>
<td></td>
<td>1.7679 (16)</td>
<td></td>
<td>0.951</td>
</tr>
<tr>
<td>C9</td>
<td>N10</td>
<td></td>
<td></td>
<td>1.352 (2)</td>
<td></td>
<td>0.963</td>
</tr>
<tr>
<td>C9</td>
<td>S21</td>
<td></td>
<td></td>
<td>1.6593 (17)</td>
<td></td>
<td>1.368 (3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Torsion Angle (°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N10—N11</td>
<td>1.3803 (19)</td>
<td>C22—H221 0.948</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N10—H1</td>
<td>0.875</td>
<td>C23—C24 1.400 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N11—C12</td>
<td>1.287 (2)</td>
<td>C23—H231 0.945</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12—C13</td>
<td>1.489 (2)</td>
<td>C24—C25 1.367 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12—C20</td>
<td>1.506 (2)</td>
<td>C24—H241 0.946</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13—C14</td>
<td>1.408 (2)</td>
<td>C25—H251 0.942</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2—C1—N6</td>
<td>122.67 (15)</td>
<td>C15—C14—H141 119.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2—C1—C25</td>
<td>118.35 (17)</td>
<td>C14—C15—C16 118.53 (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6—C1—C25</td>
<td>118.98 (15)</td>
<td>C14—C15—C19 121.25 (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1—C2—C3</td>
<td>117.26 (16)</td>
<td>C16—C15—C19 120.21 (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1—C2—C22</td>
<td>119.80 (16)</td>
<td>C15—C16—C17 120.91 (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3—C2—C22</td>
<td>122.93 (16)</td>
<td>C15—C16—H161 119.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2—C3—C4</td>
<td>119.72 (16)</td>
<td>C17—C16—H161 119.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2—C3—H31</td>
<td>120.6</td>
<td>C16—C17—C18 120.06 (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4—C3—H31</td>
<td>119.6</td>
<td>C16—C17—H171 120.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3—C4—C5</td>
<td>119.71 (15)</td>
<td>C18—C17—H171 119.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3—C4—H41</td>
<td>121.0</td>
<td>C13—C18—C17 120.55 (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5—C4—H41</td>
<td>119.2</td>
<td>C13—C18—H181 119.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4—C5—N6</td>
<td>122.65 (16)</td>
<td>C17—C18—H181 119.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4—C5—C7</td>
<td>120.12 (15)</td>
<td>C15—C19—H191 109.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6—C5—C7</td>
<td>117.21 (14)</td>
<td>C15—C19—H192 110.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1—N6—C5</td>
<td>117.97 (14)</td>
<td>H191—C19—H192 108.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5—C7—S8</td>
<td>112.42 (11)</td>
<td>C15—C19—H193 110.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5—C7—H71</td>
<td>109.6</td>
<td>H191—C19—H193 109.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8—C7—H71</td>
<td>108.4</td>
<td>H192—C19—H193 109.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5—C7—H72</td>
<td>109.1</td>
<td>C12—C20—H201 109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8—C7—H72</td>
<td>107.7</td>
<td>C12—C20—H202 110.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7—S8—C9</td>
<td>102.38 (8)</td>
<td>H201—C20—H202 108.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8—C9—N10</td>
<td>112.31 (12)</td>
<td>C12—C20—H203 110.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8—C9—S21</td>
<td>126.92 (10)</td>
<td>H201—C20—H203 108.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N10—C9—S21</td>
<td>120.76 (12)</td>
<td>C2—C22—C23 120.19 (17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9—N10—N11</td>
<td>117.61 (13)</td>
<td>C2—C22—H221 119.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9—N10—H1</td>
<td>119.6</td>
<td>C23—C22—H221 120.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N11—N10—H1</td>
<td>122.6</td>
<td>C22—C23—C24 120.11 (18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N10—N11—C12</td>
<td>119.50 (13)</td>
<td>C22—C23—H231 119.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N11—C12—C13</td>
<td>115.11 (14)</td>
<td>C24—C23—H231 120.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N11—C12—C20</td>
<td>125.40 (15)</td>
<td>C23—C24—C25 121.11 (17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13—C12—C20</td>
<td>119.48 (14)</td>
<td>C23—C24—H241 119.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12—C13—C14</td>
<td>120.34 (15)</td>
<td>C25—C24—H241 119.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12—C13—C18</td>
<td>121.04 (15)</td>
<td>C1—C25—C24 120.43 (17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14—C13—C18</td>
<td>118.60 (15)</td>
<td>C1—C25—H251 119.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13—C14—C15</td>
<td>121.34 (16)</td>
<td>C24—C25—H251 120.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13—C14—H141</td>
<td>119.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1
supplementary materials

Fig. 2
Fig. 3
supplementary materials

Fig. 4